Latest News The mysterious particle set to revolutionise low-energy electronics and quantum computing.

July 22nd 2015

A mysterious particle theorized more than 85 years ago has finally been discovered. Dubbed the “Weyl fermion”, it is a strange but stable particle that has no mass, behaves as both matter and anti-matter inside a crystal, and is claimed to be able to create completely massless electrons.

The mysterious particle set to revolutionise low-energy electronics and quantum computing.

Scientists believe that this new particle may result in super-fast electronics and significant inroads into novel areas of quantum computing.

There are two types of particles that make up the universe and everything in it: fermions and bosons. In simple terms, fermions are all the particles that make up matter (for example, electrons), and bosons are all the particles that carry force (for example, photons). Ordinarily, fermions such as electrons can collide with each other, losing energy, and no two fermions can share the same state at the same position at the same time. Weyl fermions being massless, however, have no such restrictions.

Weyl fermions were first mooted in 1929 by physicist and mathematician Hermann Weyl, who theorized that massless fermions able to carry an electric charge could exist. Without mass, he believed, electrons created from Weyl fermions would be able to move electric charge in a circuit much more quickly than ordinary electrons. In fact, according to this latest research, electric current carried by Weyl electrons in a test medium is able to move at least twice as fast as that carried by electrons in graphene and at least 1,000 times faster than in ordinary semiconductors.

The international team led by Princeton University scientists used the Princeton Institute for the Science and Technology of Materials (PRISM) and Laboratory for Topological Quantum Matter and Spectroscopy to look into many dozens of crystal arrangements before alighting upon the asymmetrical tantalum arsenide crystal (a semi-metal that has the properties of both a conductor and an insulator) as a prime candidate in the hunt for the theorized particle.

If you would like to read the full article by Colin Jeffrey please visit, Alternatively you can find the full results to the report here.

Made by Union Room